Predicting EFL Students’ Use of Artificial Intelligence Tool in Advancing Their Writing Skills
Downloads
This study examines the factors influencing the adoption and use of artificial intelligence (AI) tools to enhance writing skills among English as a Foreign Language (EFL) learners in Oman, guided by the Unified Theory of Acceptance and Use of Technology (UTAUT). The objectives were to assess the impact of performance expectancy, effort expectancy, social influence, and facilitating conditions on students’ behavioral intention and actual AI usage, and to test the moderating role of prior AI experience. A cross-sectional quantitative design was employed, with data collected from 255 undergraduate female EFL students through a validated questionnaire. Structural equation modeling (SEM) and confirmatory factor analysis were used to validate the measurement model and test hypothesized relationships. Findings indicate that behavioral intention and facilitating conditions significantly predicted actual AI tool use, while performance expectancy, effort expectancy, and social influence strongly shaped behavioral intention. Mediation tests confirmed that behavioral intention served as a key pathway linking UTAUT constructs to actual adoption, and moderation analysis showed that prior AI experience strengthened the intention–usage relationship. This research contributes to a context-specific, evidence-based framework for AI adoption in EFL writing, offering novel insights for educators, institutions, and technology designers to integrate AI ethically and effectively in language learning.
Downloads
[1] Wei, P., Wang, X., & Dong, H. (2023). The impact of automated writing evaluation on second language writing skills of Chinese EFL learners: a randomized controlled trial. Frontiers in Psychology, 14, 1249991. doi:10.3389/fpsyg.2023.1249991.
[2] Song, C., & Song, Y. (2023). Enhancing academic writing skills and motivation: assessing the efficacy of ChatGPT in AI-assisted language learning for EFL students. Frontiers in Psychology, 14. doi:10.3389/fpsyg.2023.1260843.
[3] Al-Raimi, M., Mudhsh, B. A., Al-Yafaei, Y., & Al-Maashani, S. (2024). Utilizing artificial intelligence tools for improving writing skills: Exploring Omani EFL learners’ perspectives. Forum for Linguistic Studies, 6(2), 1177. doi:10.59400/fls.v6i2.1177.
[4] Allen, T. J., & Mizumoto, A. (2024). ChatGPT over my friends: Japanese English-as-a-Foreign-Language learners’ preferences for editing and proofreading strategies. RELC Journal, 00336882241262533. doi:10.1177/00336882241262533.
[5] Sysoyev, P. V., & Filatov, E. M. (2024). Artificial intelligence in teaching Russian as a foreign language. Russian Language Studies, 22(2), 300–317. doi:10.22363/2618-8163-2024-22-2-300-317.
[6] Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425–478. doi:10.2307/30036540.
[7] Rafida, T., Suwandi, S., & Ananda, R. (2024). Efl Students’ Perception in Indonesia and Taiwan on Using Artificial Intelligence To Enhance Writing Skills. Jurnal Ilmiah Peuradeun, 12(3), 987–1016. doi:10.26811/peuradeun.v12i3.1520.
[8] Abdul Rahman, N. A., Zulkornain, L. H., & Hamzah, N. H. (2022). Exploring Artificial Intelligence using Automated Writing Evaluation for Writing Skills. Environment-Behaviour Proceedings Journal, 7(SI9), 547–553. doi:10.21834/ebpj.v7isi9.4304.
[9] Alenezi, F. (2023). Artificial Intelligence Versus Arab Universities: An Enquiry into the Saudi Context. Humanities and Management Sciences - Scientific Journal of King Faisal University, 1–7. doi:10.37575/h/edu/220038.
[10] Pillai, R., Sivathanu, B., Metri, B., & Kaushik, N. (2024). Students’ adoption of AI-based teacher-bots (T-bots) for learning in higher education. Information Technology and People, 37(1), 328–355. doi:10.1108/ITP-02-2021-0152.
[11] Jiang, R. (2022). How does artificial intelligence empower EFL teaching and learning nowadays? A review on artificial intelligence in the EFL context. Frontiers in Psychology, 13. doi:10.3389/fpsyg.2022.1049401.
[12] Hwang, W. Y., Nurtantyana, R., Purba, S. W. D., Hariyanti, U., Indrihapsari, Y., & Surjono, H. D. (2023). AI and Recognition Technologies to Facilitate English as Foreign Language Writing for Supporting Personalization and Contextualization in Authentic Contexts. Journal of Educational Computing Research, 61(5), 1008–1035. doi:10.1177/07356331221137253.
[13] Diao, Y., Li, Z., Zhou, J., Gao, W., & Gong, X. (2024). A Meta-analysis of College Students' Intention to Use Generative Artificial Intelligence. arXiv Preprint, arXiv:2409.06712. doi:10.48550/arXiv.2409.06712.
[14] Papakonstantinidis, S., Kwiatek, P., & Spathopoulou, F. (2024). Embrace or resist? Drivers of artificial intelligence writing software adoption in academic and non-academic contexts. Contemporary Educational Technology, 16(2), ep495. doi:10.30935/cedtech/14250.
[15] Rahayu, Weda, S., Muliati, & De Vega, N. (2024). Artificial Intelligence in writing instruction: A self-determination theory perspective. XLinguae, 17(1), 234–244. doi:10.18355/XL.2024.17.01.16.
[16] Roy, R., Babakerkhell, M. D., Mukherjee, S., Pal, D., & Funilkul, S. (2022). Evaluating the Intention for the Adoption of Artificial Intelligence-Based Robots in the University to Educate the Students. IEEE Access, 10, 125666–125678. doi:10.1109/ACCESS.2022.3225555.
[17] Li, B., Chen, Y., Liu, L., & Zheng, B. (2023). Users’ intention to adopt artificial intelligence-based chatbot: a meta-analysis. Service Industries Journal, 43(15–16), 1117–1139. doi:10.1080/02642069.2023.2217756.
[18] Venkatesh, V., Brown, S. A., & Hoehle, H. (2012). Understanding technology adoption in the household context: A comparison of seven theoretical models. ECIS 2012 - Proceedings of the 20th European Conference on Information Systems, 35, 1–13.
[19] Bilal, A. A. B., & Almahallawi, D. W. (2024). Recruiting faculty members at the University of the Emirates for the implementation of artificial intelligence applications in the educational process: “A field study within the framework of the Unified Theory of Acceptance and Use of Technology.” ARID International Journal of Social Sciences and Humanities, 1–33. doi:10.36772/arid.aijssh.2024.s.77.
[20] Chatterjee, S., Rana, N. P., Khorana, S., Mikalef, P., & Sharma, A. (2023). Assessing Organizational Users’ Intentions and Behavior to AI Integrated CRM Systems: a Meta-UTAUT Approach. Information Systems Frontiers, 25(4), 1299–1313. doi:10.1007/s10796-021-10181-1.
[21] Jia, F., Sun, D., Ma, Q., & Looi, C. K. (2022). Developing an AI-Based Learning System for L2 Learners’ Authentic and Ubiquitous Learning in English Language. Sustainability (Switzerland), 14(23), 15527. doi:10.3390/su142315527.
[22] Kim, W. H., & Kim, J. H. (2020). Individualized AI Tutor Based on Developmental Learning Networks. IEEE Access, 8, 27927–27937. doi:10.1109/ACCESS.2020.2972167.
[23] Ramamuthie, V., & Abdul Aziz, A. (2022). Systematic Review: The Effectiveness of Digital Tools to Improve Writing Skill of ESL Students. International Journal of Academic Research in Business and Social Sciences, 12(3), 1–20. doi:10.6007/ijarbss/v12-i3/12897.
[24] Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308(1–2), 641–652. doi:10.1007/s10479-020-03918-9.
[25] Alharbi, M. (2024). The role of artificial intelligence in advancing English as a foreign language teaching at Saudi universities. World Journal on Educational Technology: Current Issues, 16(3), 181–200. doi:10.18844/wjet.v16i3.9311.
[26] Lee, Y. J., Davis, R. O., & Lee, S. O. (2024). University students’ perceptions of artificial intelligence-based tools for English writing courses. Online Journal of Communication and Media Technologies, 14(1), e202412. doi:10.30935/ojcmt/14195.
[27] Fang, X., Guo, K., & Ng, D. T. K. (2024). Sudowrite: Co-Writing Creative Stories with Artificial Intelligence. RELC Journal, 00336882241250109. doi:10.1177/00336882241250109.
[28] Duong, C. D., Le, T. T., Dang, N. S., Do, N. D., & Vu, A. T. (2024). Unraveling the determinants of digital entrepreneurial intentions: do performance expectancy of artificial intelligence solutions matter? Journal of Small Business and Enterprise Development, 31(7), 1327–1356. doi:10.1108/JSBED-02-2024-0065.
[29] Mir, A. A., Hassan, S., & Khan, S. J. (2023). Understanding digital entrepreneurial intentions: A capital theory perspective. International Journal of Emerging Markets, 18(12), 6165-6191. doi:10.1108/IJOEM-05-2021-0687.
[30] Jain, P. H., Kumar, V., Samuel, J., Singh, S., Mannepalli, A., & Anderson, R. (2023). Artificially Intelligent Readers: An Adaptive Framework for Original Handwritten Numerical Digits Recognition with OCR Methods. Information (Switzerland), 14(6), 305. doi:10.3390/info14060305.
[31] Cheng, M., Li, X., & Xu, J. (2022). Promoting Healthcare Workers’ Adoption Intention of Artificial-Intelligence-Assisted Diagnosis and Treatment: The Chain Mediation of Social Influence and Human–Computer Trust. International Journal of Environmental Research and Public Health, 19(20), 13311. doi:10.3390/ijerph192013311.
[32] Dingel, J., Kleine, A. K., Cecil, J., Sigl, A. L., Lermer, E., & Gaube, S. (2024). Predictors of Health Care Practitioners’ Intention to Use AI-Enabled Clinical Decision Support Systems: Meta-Analysis Based on the Unified Theory of Acceptance and Use of Technology. Journal of Medical Internet Research, 26(1), 57224. doi:10.2196/57224.
[33] Yang, H. H. (2024). The Acceptance of AI Tools Among Design Professionals: Exploring the Moderating Role of Job Replacement. International Review of Research in Open and Distributed Learning, 25(3), 326–349. doi:10.19173/irrodl.v25i3.7811.
[34] Duong, C. D., Bui, D. T., Pham, H. T., Vu, A. T., & Nguyen, V. H. (2024). How effort expectancy and performance expectancy interact to trigger higher education students’ uses of ChatGPT for learning. Interactive Technology and Smart Education, 21(3), 356–380. doi:10.1108/ITSE-05-2023-0096.
[35] Hameed, B. Z., Naik, N., Ibrahim, S., Tatkar, N. S., Shah, M. J., Prasad, D., Hegde, P., Chlosta, P., Rai, B. P., & Somani, B. K. (2023). Breaking Barriers: Unveiling Factors Influencing the Adoption of Artificial Intelligence by Healthcare Providers. Big Data and Cognitive Computing, 7(2), 105. doi:10.3390/bdcc7020105.
[36] Utami, S. P. T., Andayani, Winarni, R., & Sumarwati. (2023). Utilization of artificial intelligence technology in an academic writing class: How do Indonesian students perceive? Contemporary Educational Technology, 15(4), 13419. doi:10.30935/cedtech/13419.
[37] Zhang, J. (2024). A Study of Undergraduates’ Behavioral Intention to Use Generative AI Tools—Ernie Bot as An Example. Highlights in Business, Economics and Management, 41, 269–276. doi:10.54097/9xw63p10.
[38] Halim, E., Aribowo, H. A., & Saputra, L. S. (2023). Analyzing Factors Impacting Intention to Use AI-Powered Tools in the Education Field. Proceedings - ICT 2023 - 29th International Conference on Telecommunications: Next-Generation Telecommunications for Digital Inclusion and Universal Access. doi:10.1109/ICT60153.2023.10374054.
[39] Graf-Vlachy, L., Buhtz, K., & König, A. (2018). Social influence in technology adoption: taking stock and moving forward. Management Review Quarterly, 68(1), 37–76. doi:10.1007/s11301-017-0133-3.
[40] Kaharuddin, K. (2021). Assessing the effect of using artificial intelligence on the writing skill of Indonesian learners of English. Linguistics and Culture Review, 5(1), 288–304. doi:10.21744/lingcure.v5n1.1555.
[41] Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339. doi:10.2307/249008.
[42] Strzelecki, A. (2024). To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interactive Learning Environments, 32(9), 5142–5155. doi:10.1080/10494820.2023.2209881.
[43] Hashim, H., Yunus, M. M., & Embi, M. A. (2018). Factors influencing polytechnic English as second language (ESL) learners’ attitude and intention for using mobile learning. Asian ESP Journal, 14(7), 195–208.
[44] Tabri, N., & Elliott, C. M. (2012). Principles and practice of structural equation modeling. Canadian Graduate Journal of Sociology and Criminology, 1(1), 59-60. doi:10.15353/cgjsc.v1i1.3787.
[45] Hair, J., Hult, G., Ringle, C., & Sarstedt, M. (2022). A Primer on Partial Least Squares Structural Equation Modelling (PLS-SEM). SAGE, New York, United States. doi:10.1007/978-3-030-80519-7.
[46] Hashim, R., Aldaba, A. M. A., Haneef, M. A. M., & Noordin, M. F. (2023). Partial Least Squares Modelling of Factors Influencing Empathy Among Malaysian Secondary School Students. Malaysian Journal of Learning and Instruction, 20(1), 93–119. doi:10.32890/mjli2023.20.1.4.
[47] Ma, H., & Li, N. (2024). Exploring User Behavioral Intentions and Their Relationship with AI Design Tools: A Future Outlook on Intelligent Design. IEEE Access, 3441088. doi:10.1109/ACCESS.2024.3441088.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.



















