A Fuzzy Approach to the Synthesis of Cognitive Maps for Modeling Decision Making in Complex Systems

Aslan A. Tatarkanov, Islam A. Alexandrov, Leonid M. Chervjakov, Tatyana V. Karlova


The object of this study is fuzzy cognitive modeling as a means of studying semistructured socio-economic systems. The features of constructing cognitive maps, providing the ability to choose management decisions in complex semistructured socio-economic systems, are described. It is shown that further improvement of technologies necessary for developing decision support systems and their practical use is still relevant. This work aimed to improve the accuracy of cognitive modeling of semistructured systems based on a fuzzy cognitive map of structuring nonformalized situations (MSNS) with the evaluation of root-mean-square error (RMSE) and mean average squared error (MASE) coefficients. In order to achieve the goal, the following main methods were used: systems analysis methods, fuzzy logic and fuzzy sets theory postulates, theory of integral wavelet transform, correlation and autocorrelation analyses. As a result, a new methodology for constructing MSNS was proposed—a map of structuring nonformalized situations that combines the positive properties of previous fuzzy cognitive maps. The solution of modeling problems based on this methodology should increase the reliability and quality of analysis and modeling of semistructured systems and processes under uncertainty. The analysis using open datasets proved that compared to the classical ARIMA, SVR, MLP, and Fuzzy time series models, our proposed model provides better performance in terms of MASE and RMSE metrics, which confirms its advantage. Thus, it is advisable to use our proposed algorithm in the future as a mathematical basis for developing software tools for the analysis and modeling of problems in semistructured systems and processes.


Doi: 10.28991/ESJ-2022-06-02-012

Full Text: PDF


Semistructured Systems; Fuzzy Logic; Fuzzy Cognitive Maps; Cognitive Analysis; Dynamic Models.


Kluttz, D., & Mulligan, D. K. (2019). Automated decision support technologies and the legal profession. SSRN Electronic Journal, 34, 853. doi:10.2139/ssrn.3443063.

Alshamrani, O. S., & Alshibani, A. (2020). Automated decision support system for selecting the envelope and structural systems for educational facilities. Building and Environment, 181, 106993. doi:10.1016/j.buildenv.2020.106993.

Yang, S., Page, T., Zhang, Y., & Zhao, Y. F. (2020). Towards an automated decision support system for the identification of additive manufacturing part candidates. Journal of Intelligent Manufacturing, 31(8), 1917–1933. doi:10.1007/s10845-020-01545-6.

Clercq, P. De, & Hasman, A. (2004). Experiences with the development, implementation and evaluation of automated decision support systems. Studies in Health Technology and Informatics, 107, 1033–1037. doi:10.3233/978-1-60750-949-3-1033.

Lauraitis, A., Maskeliunas, R., Damasevicius, R., Polap, D., & Wozniak, M. (2019). A Smartphone Application for Automated Decision Support in Cognitive Task Based Evaluation of Central Nervous System Motor Disorders. IEEE Journal of Biomedical and Health Informatics, 23(5), 1865–1876. doi:10.1109/JBHI.2019.2891729.

Saleh, M. D., & Eswaran, C. (2012). An automated decision-support system for non-proliferative diabetic retinopathy disease based on MAs and HAs detection. Computer Methods and Programs in Biomedicine, 108(1), 186–196. doi:10.1016/j.cmpb.2012.03.004.

Arnott, D., & Pervan, G. (2005). A critical analysis of decision support systems research. Journal of Information Technology, 20(2), 67–87. doi:10.1057/palgrave.jit.2000035.

Marakas, G. M. (2003). Decision support systems in the 21st century. Upper Saddle River: Prentice Hall, New Jersey, United States.

Bonczek, R. H., Holsapple, C. W., & Whinston, A. B. (2014). Foundations of decision support systems. Academic Press. doi: 10.1016/C2013-0-10396-0.

Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media, Dordrecht, Netherlands. doi:10.1007/978-94-015-7949-0.

Dyczkowski, K. (2018). Intelligent Medical Decision Support System Based on Imperfect Information. Studies in Computational Intelligence. Springer, Cham, Switzerland. doi:10.1007/978-3-319-67005-8.

Blomqvist, E. (2014). The use of Semantic Web technologies for decision support-a survey. Semantic Web, 5(3), 177–201. doi:10.3233/SW-2012-0084.

Eden, C. (2004). Analyzing cognitive maps to help structure issues or problems. European Journal of Operational Research, 159(3), 673–686. doi:10.1016/S0377-2217(03)00431-4.

Eden, C. (1992). On the Nature of Cognitive Maps. Journal of Management Studies, 29(3), 261–265. doi:10.1111/j.1467-6486.1992.tb00664.x.

Glykas, M. (2010). Fuzzy cognitive maps: Advances in theory, methodologies, tools and applications (Vol. 247). Springer Science & Business Media.

Aguilar, J. (2005). A Survey about Fuzzy Cognitive Maps Papers (Invited Paper). International Journal of Computational Cognition, 3(2), 27–33.

Stylios, C. D., & Groumpos, P. P. (2004). Modeling Complex Systems Using Fuzzy Cognitive Maps. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 34(1), 155–162. doi:10.1109/TSMCA.2003.818878.

Chen, C. T., & Chiu, Y. T. (2021). A study of dynamic fuzzy cognitive map model with group consensus based on linguistic variables. Technological Forecasting and Social Change, 171, 120948. doi:10.1016/j.techfore.2021.120948.

Feng, G., Zhang, L., Yang, J., & Lu, W. (2021). Long-term prediction of time series using fuzzy cognitive maps. Engineering Applications of Artificial Intelligence, 102, 104274. doi:10.1016/j.engappai.2021.104274.

Babroudi, N. E. P., Sabri-Laghaie, K., & Ghoushchi, N. G. (2021). Re-evaluation of the healthcare service quality criteria for the Covid-19 pandemic: Z-number fuzzy cognitive map. Applied Soft Computing, 112, 107775. doi:10.1016/j.asoc.2021.107775.

Baykasoğlu, A., & Gölcük, İ. (2021). Alpha-cut based fuzzy cognitive maps with applications in decision-making. Computers and Industrial Engineering, 152, 107007. doi:10.1016/j.cie.2020.107007.

Wang, C., Liu, J., Wu, K., & Ying, C. (2021). Learning large-scale fuzzy cognitive maps using an evolutionary many-task algorithm. Applied Soft Computing, 108, 107441. doi:10.1016/j.asoc.2021.107441.

Liu, Z., & Liu, J. (2020). A robust time series prediction method based on empirical mode decomposition and high-order fuzzy cognitive maps. Knowledge-Based Systems, 203, 106105. doi:10.1016/j.knosys.2020.106105.

Chen, H., Zhang, L., & Wu, X. (2020). Performance risk assessment in public–private partnership projects based on adaptive fuzzy cognitive map. Applied Soft Computing Journal, 93, 106413. doi:10.1016/j.asoc.2020.106413.

Akinnuwesi, B. A., Adegbite, B. A., Adelowo, F., Ima-Edomwonyi, U., Fashoto, G., & Amumeji, O. T. (2020). Decision support system for diagnosing Rheumatic-Musculoskeletal Disease using fuzzy cognitive map technique. Informatics in Medicine Unlocked, 18, 100279. doi:10.1016/j.imu.2019.100279.

Puerto, E., Aguilar, J., López, C., & Chávez, D. (2019). Using Multilayer Fuzzy Cognitive Maps to diagnose Autism Spectrum Disorder. Applied Soft Computing Journal, 75, 58–71. doi:10.1016/j.asoc.2018.10.034.

Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65–75. doi:10.1016/S0020-7373(86)80040-2.

Lim, S. (2021). Hebbian learning revisited and its inference underlying cognitive function. Current Opinion in Behavioral Sciences, 38, 96–102. doi:10.1016/j.cobeha.2021.02.006.

Kang, B., Mo, H., Sadiq, R., & Deng, Y. (2016). Generalized fuzzy cognitive maps: a new extension of fuzzy cognitive maps. International Journal of Systems Assurance Engineering and Management, 7(2), 156–166. doi:10.1007/s13198-016-0444-0.

Stach, W., Kurgan, L., & Pedrycz, W. (2006). Higher-order fuzzy cognitive maps. Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS, 166–171. doi:10.1109/NAFIPS.2006.365402.

Bhattacharyya, A., & Pachori, R. B. (2017). A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform. IEEE Transactions on Biomedical Engineering, 64(9), 2003–2015. doi:10.1109/TBME.2017.2650259.

Deng, W., Zhang, S., Zhao, H., & Yang, X. (2018). A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing. IEEE Access, 6, 35042–35056. doi:10.1109/ACCESS.2018.2834540.

Liu, J., Chi, Y., & Zhu, C. (2016). A Dynamic Multiagent Genetic Algorithm for Gene Regulatory Network Reconstruction Based on Fuzzy Cognitive Maps. IEEE Transactions on Fuzzy Systems, 24(2), 419–431. doi:10.1109/TFUZZ.2015.2459756.

Liu, W., & Chen, W. (2019). Recent advancements in empirical wavelet transform and its applications. IEEE Access, 7, 103770–103780. doi:10.1109/ACCESS.2019.2930529.

Spencer, J. (1994). Ten Lectures on the Probabilistic Method. Ten Lectures on the Probabilistic Method, 64, 118848374. doi:10.1137/1.9781611970074.

Gilles, J. (2013). Empirical wavelet transform. IEEE Transactions on Signal Processing, 61(16), 3999–4010. doi:10.1109/TSP.2013.2265222.

AEMO. (2022). Australian energy market operator. Available online: https://aemo.com.au/ (accessed on January 2022).

FRED. (2022). Federal Reserve Economic Data. Federal Reserve Bank of Saint Louis, Missouri, United States. Available online: https://fred.stlouisfed.org/ (accessed on January 2022).

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. doi:10.1016/j.ijforecast.2006.03.001.

Drucker, H., Surges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. In Advances in Neural Information Processing Systems, NeurIPS Proceedings, 155–161.

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. (2nd ed.) OTexts. Available online: https://otexts.org/fpp2/ (accessed on January 2022).

Yonggang, D., Huan, W., Mingqiang, W., Linjiang, T., & Tao, Y. (2022). Application of ARIMA-RTS optimal smoothing algorithm in gas well production prediction. Petroleum. doi:10.1016/j.petlm.2021.09.001.

Salman, A. G., & Kanigoro, B. (2021). Visibility Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Models. Procedia Computer Science, 179, 252–259. doi:10.1016/j.procs.2021.01.004.

Cheng, C. H., Chen, Y. S., & Wu, Y. L. (2009). Forecasting innovation diffusion of products using trend-weighted fuzzy time-series model. Expert Systems with Applications, 36(2 PART 1), 1826–1832. doi:10.1016/j.eswa.2007.12.041.

Sadaei, H. J., Enayatifar, R., Abdullah, A. H., & Gani, A. (2014). Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. International Journal of Electrical Power and Energy Systems, 62, 118–129. doi:10.1016/j.ijepes.2014.04.026.

Severiano, C. A., Silva, P. C. de L. e., Weiss Cohen, M., & Guimarães, F. G. (2021). Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems. Renewable Energy, 171, 764–783. doi:10.1016/j.renene.2021.02.117.

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273–297. doi:10.1023/A:1022627411411.

Haykin, S. (2009). A comprehensive foundation.” Neural networks. Pearson Education Inc., New Jersey, United States.

Baptista, M. L., Elsa, E. M., & Goebel, K. (2021). A self-organizing map and a normalizing multi-layer perceptron approach to baselining in prognostics under dynamic regimes. Neurocomputing, 456, 268–287. doi:10.1016/j.neucom.2021.05.031.

Opěla, P., Schindler, I., Kawulok, P., Kawulok, R., Rusz, S., & Navrátil, H. (2021). On various multi-layer perceptron and radial basis function based artificial neural networks in the process of a hot flow curve description. Journal of Materials Research and Technology, 14, 1837–1847. doi:10.1016/j.jmrt.2021.07.100.

Pedregosa, F., Weiss, R., Brucher, M., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Full Text: PDF

DOI: 10.28991/ESJ-2022-06-02-012


  • There are currently no refbacks.

Copyright (c) 2022 Aslan A. Tatarkanov, Islam A. Alexandrov, Leonid M. Chervjakov, Tatyana V. Karlova