A Fuzzy Approach to the Synthesis of Cognitive Maps for Modeling Decision Making in Complex Systems
Abstract
Doi: 10.28991/ESJ-2022-06-02-012
Full Text: PDF
Keywords
References
Kluttz, D., & Mulligan, D. K. (2019). Automated decision support technologies and the legal profession. SSRN Electronic Journal, 34, 853. doi:10.2139/ssrn.3443063.
Alshamrani, O. S., & Alshibani, A. (2020). Automated decision support system for selecting the envelope and structural systems for educational facilities. Building and Environment, 181, 106993. doi:10.1016/j.buildenv.2020.106993.
Yang, S., Page, T., Zhang, Y., & Zhao, Y. F. (2020). Towards an automated decision support system for the identification of additive manufacturing part candidates. Journal of Intelligent Manufacturing, 31(8), 1917–1933. doi:10.1007/s10845-020-01545-6.
Clercq, P. De, & Hasman, A. (2004). Experiences with the development, implementation and evaluation of automated decision support systems. Studies in Health Technology and Informatics, 107, 1033–1037. doi:10.3233/978-1-60750-949-3-1033.
Lauraitis, A., Maskeliunas, R., Damasevicius, R., Polap, D., & Wozniak, M. (2019). A Smartphone Application for Automated Decision Support in Cognitive Task Based Evaluation of Central Nervous System Motor Disorders. IEEE Journal of Biomedical and Health Informatics, 23(5), 1865–1876. doi:10.1109/JBHI.2019.2891729.
Saleh, M. D., & Eswaran, C. (2012). An automated decision-support system for non-proliferative diabetic retinopathy disease based on MAs and HAs detection. Computer Methods and Programs in Biomedicine, 108(1), 186–196. doi:10.1016/j.cmpb.2012.03.004.
Arnott, D., & Pervan, G. (2005). A critical analysis of decision support systems research. Journal of Information Technology, 20(2), 67–87. doi:10.1057/palgrave.jit.2000035.
Marakas, G. M. (2003). Decision support systems in the 21st century. Upper Saddle River: Prentice Hall, New Jersey, United States.
Bonczek, R. H., Holsapple, C. W., & Whinston, A. B. (2014). Foundations of decision support systems. Academic Press. doi: 10.1016/C2013-0-10396-0.
Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media, Dordrecht, Netherlands. doi:10.1007/978-94-015-7949-0.
Dyczkowski, K. (2018). Intelligent Medical Decision Support System Based on Imperfect Information. Studies in Computational Intelligence. Springer, Cham, Switzerland. doi:10.1007/978-3-319-67005-8.
Blomqvist, E. (2014). The use of Semantic Web technologies for decision support-a survey. Semantic Web, 5(3), 177–201. doi:10.3233/SW-2012-0084.
Eden, C. (2004). Analyzing cognitive maps to help structure issues or problems. European Journal of Operational Research, 159(3), 673–686. doi:10.1016/S0377-2217(03)00431-4.
Eden, C. (1992). On the Nature of Cognitive Maps. Journal of Management Studies, 29(3), 261–265. doi:10.1111/j.1467-6486.1992.tb00664.x.
Glykas, M. (2010). Fuzzy cognitive maps: Advances in theory, methodologies, tools and applications (Vol. 247). Springer Science & Business Media.
Aguilar, J. (2005). A Survey about Fuzzy Cognitive Maps Papers (Invited Paper). International Journal of Computational Cognition, 3(2), 27–33.
Stylios, C. D., & Groumpos, P. P. (2004). Modeling Complex Systems Using Fuzzy Cognitive Maps. IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans., 34(1), 155–162. doi:10.1109/TSMCA.2003.818878.
Chen, C. T., & Chiu, Y. T. (2021). A study of dynamic fuzzy cognitive map model with group consensus based on linguistic variables. Technological Forecasting and Social Change, 171, 120948. doi:10.1016/j.techfore.2021.120948.
Feng, G., Zhang, L., Yang, J., & Lu, W. (2021). Long-term prediction of time series using fuzzy cognitive maps. Engineering Applications of Artificial Intelligence, 102, 104274. doi:10.1016/j.engappai.2021.104274.
Babroudi, N. E. P., Sabri-Laghaie, K., & Ghoushchi, N. G. (2021). Re-evaluation of the healthcare service quality criteria for the Covid-19 pandemic: Z-number fuzzy cognitive map. Applied Soft Computing, 112, 107775. doi:10.1016/j.asoc.2021.107775.
Baykasoğlu, A., & Gölcük, İ. (2021). Alpha-cut based fuzzy cognitive maps with applications in decision-making. Computers and Industrial Engineering, 152, 107007. doi:10.1016/j.cie.2020.107007.
Wang, C., Liu, J., Wu, K., & Ying, C. (2021). Learning large-scale fuzzy cognitive maps using an evolutionary many-task algorithm. Applied Soft Computing, 108, 107441. doi:10.1016/j.asoc.2021.107441.
Liu, Z., & Liu, J. (2020). A robust time series prediction method based on empirical mode decomposition and high-order fuzzy cognitive maps. Knowledge-Based Systems, 203, 106105. doi:10.1016/j.knosys.2020.106105.
Chen, H., Zhang, L., & Wu, X. (2020). Performance risk assessment in public–private partnership projects based on adaptive fuzzy cognitive map. Applied Soft Computing Journal, 93, 106413. doi:10.1016/j.asoc.2020.106413.
Akinnuwesi, B. A., Adegbite, B. A., Adelowo, F., Ima-Edomwonyi, U., Fashoto, G., & Amumeji, O. T. (2020). Decision support system for diagnosing Rheumatic-Musculoskeletal Disease using fuzzy cognitive map technique. Informatics in Medicine Unlocked, 18, 100279. doi:10.1016/j.imu.2019.100279.
Puerto, E., Aguilar, J., López, C., & Chávez, D. (2019). Using Multilayer Fuzzy Cognitive Maps to diagnose Autism Spectrum Disorder. Applied Soft Computing Journal, 75, 58–71. doi:10.1016/j.asoc.2018.10.034.
Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65–75. doi:10.1016/S0020-7373(86)80040-2.
Lim, S. (2021). Hebbian learning revisited and its inference underlying cognitive function. Current Opinion in Behavioral Sciences, 38, 96–102. doi:10.1016/j.cobeha.2021.02.006.
Kang, B., Mo, H., Sadiq, R., & Deng, Y. (2016). Generalized fuzzy cognitive maps: a new extension of fuzzy cognitive maps. International Journal of Systems Assurance Engineering and Management, 7(2), 156–166. doi:10.1007/s13198-016-0444-0.
Stach, W., Kurgan, L., & Pedrycz, W. (2006). Higher-order fuzzy cognitive maps. Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS, 166–171. doi:10.1109/NAFIPS.2006.365402.
Bhattacharyya, A., & Pachori, R. B. (2017). A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform. IEEE Transactions on Biomedical Engineering, 64(9), 2003–2015. doi:10.1109/TBME.2017.2650259.
Deng, W., Zhang, S., Zhao, H., & Yang, X. (2018). A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing. IEEE Access, 6, 35042–35056. doi:10.1109/ACCESS.2018.2834540.
Liu, J., Chi, Y., & Zhu, C. (2016). A Dynamic Multiagent Genetic Algorithm for Gene Regulatory Network Reconstruction Based on Fuzzy Cognitive Maps. IEEE Transactions on Fuzzy Systems, 24(2), 419–431. doi:10.1109/TFUZZ.2015.2459756.
Liu, W., & Chen, W. (2019). Recent advancements in empirical wavelet transform and its applications. IEEE Access, 7, 103770–103780. doi:10.1109/ACCESS.2019.2930529.
Spencer, J. (1994). Ten Lectures on the Probabilistic Method. Ten Lectures on the Probabilistic Method, 64, 118848374. doi:10.1137/1.9781611970074.
Gilles, J. (2013). Empirical wavelet transform. IEEE Transactions on Signal Processing, 61(16), 3999–4010. doi:10.1109/TSP.2013.2265222.
AEMO. (2022). Australian energy market operator. Available online: https://aemo.com.au/ (accessed on January 2022).
FRED. (2022). Federal Reserve Economic Data. Federal Reserve Bank of Saint Louis, Missouri, United States. Available online: https://fred.stlouisfed.org/ (accessed on January 2022).
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688. doi:10.1016/j.ijforecast.2006.03.001.
Drucker, H., Surges, C. J. C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. In Advances in Neural Information Processing Systems, NeurIPS Proceedings, 155–161.
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. (2nd ed.) OTexts. Available online: https://otexts.org/fpp2/ (accessed on January 2022).
Yonggang, D., Huan, W., Mingqiang, W., Linjiang, T., & Tao, Y. (2022). Application of ARIMA-RTS optimal smoothing algorithm in gas well production prediction. Petroleum. doi:10.1016/j.petlm.2021.09.001.
Salman, A. G., & Kanigoro, B. (2021). Visibility Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Models. Procedia Computer Science, 179, 252–259. doi:10.1016/j.procs.2021.01.004.
Cheng, C. H., Chen, Y. S., & Wu, Y. L. (2009). Forecasting innovation diffusion of products using trend-weighted fuzzy time-series model. Expert Systems with Applications, 36(2 PART 1), 1826–1832. doi:10.1016/j.eswa.2007.12.041.
Sadaei, H. J., Enayatifar, R., Abdullah, A. H., & Gani, A. (2014). Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. International Journal of Electrical Power and Energy Systems, 62, 118–129. doi:10.1016/j.ijepes.2014.04.026.
Severiano, C. A., Silva, P. C. de L. e., Weiss Cohen, M., & Guimarães, F. G. (2021). Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems. Renewable Energy, 171, 764–783. doi:10.1016/j.renene.2021.02.117.
Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273–297. doi:10.1023/A:1022627411411.
Haykin, S. (2009). A comprehensive foundation.” Neural networks. Pearson Education Inc., New Jersey, United States.
Baptista, M. L., Elsa, E. M., & Goebel, K. (2021). A self-organizing map and a normalizing multi-layer perceptron approach to baselining in prognostics under dynamic regimes. Neurocomputing, 456, 268–287. doi:10.1016/j.neucom.2021.05.031.
Opěla, P., Schindler, I., Kawulok, P., Kawulok, R., Rusz, S., & Navrátil, H. (2021). On various multi-layer perceptron and radial basis function based artificial neural networks in the process of a hot flow curve description. Journal of Materials Research and Technology, 14, 1837–1847. doi:10.1016/j.jmrt.2021.07.100.
Pedregosa, F., Weiss, R., Brucher, M., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
DOI: 10.28991/ESJ-2022-06-02-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Aslan A. Tatarkanov, Islam A. Alexandrov, Leonid M. Chervjakov, Tatyana V. Karlova